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1. SUMMARY
The use of computational-model trained artificial neural
networks to acquire damage specific information from
electronic holograms is discussed.  A neural network is
trained to transform two time-average holograms into a
pattern related to the bending-induced-strain distribution of
the vibrating component.  The bending distribution is very
sensitive to component damage unlike the characteristic
fringe pattern or the displacement amplitude distribution.
The neural network processor is fast for real-time
visualization of damage. The  two-hologram limit makes the
processor more robust to speckle pattern decorrelation.
Undamaged and cracked cantilever plates serve as effective
objects for testing the combination of electronic holography
and neural-net processing.  The requirements are discussed
for using  finite-element-model trained neural networks for
field inspections of engine components.  The paper
specifically discusses neural-network fringe pattern analysis
in the presence of the laser speckle effect and the
performances of two limiting cases of the neural-net
architecture.

2. INTRODUCTION
As NASA’s Turbomachinery Center of Excellence, Lewis
Research Center (LeRC) is involved in the testing of various
types of rotating machinery including compressors, turbines,
fan blades and propellers. Blades are tested in an electronic
holography laboratory to obtain frequency and mode shape
information for use in wind tunnel and test cell research
programs.  Over time, this process has been found to be a
reliable way of predicting frequencies and mode shapes of
blades as well as other test articles.  Laboratory electronic
holography has become an integral part of the turbomachinery
testing, design and fabrication process.

One way to reduce the cost of wind tunnel testing is to inspect
components in situ rather than the laboratory.  Non-
interference inspection to detect crack damage in blades is
needed after high vibration stress amplitudes and cycles occur
during testing with rotating blades.  High stress amplitudes
and cycles have been encountered at resonance, flutter and
stall conditions during mapping and operability testing of
turbojet engine fan models at LeRC.  A blade inspection is
wise when the stresses exceed the safe stress limits that have
been preset.

Removing the blades from a rotor for laboratory inspection
for damage or changed vibration characteristics is expensive
in terms of lost test time and facilities costs. Hence, whole-
field, real-time, in-situ optical inspections using electronic
holography are especially attractive. Electronic holography is
non-intrusive and has the potential to reduce the number of
expensive-to-install, intrusive strain gages needed for wind
tunnel testing and for detection of damaged regions.

One defect of electronic holography is that the display of the
displacement distribution of a vibrating component may
require as many as twelve previously acquired frames.1 A
pipeline processor maintains the illusion of a real-time
display, but the speckle patterns must remain correlated
between members of sets of twelve frames.  That requirement

is hard to maintain outside a laboratory.  Regardless, neither
the characteristic fringe patterns of classical time-average
holography nor the displacement distributions that can be
calculated from electronic time-average holography are ideal
for inspecting for damage.  Instead, the bending induced
strain distribution2 has been shown to be a much better
indicator of damage to composites as well as cracking in
metals.3 But the bending distribution must be calculated from
a very accurately known displacement distribution.

Artificial neural networks are being tested as alternative
processors for electronic holography at LeRC.  The goal is to
extract damage specific information from as few frames as
possible so that electronic holography will be convenient to
use for structural inspections in the 9X15 wind tunnel and
spin rigs at LeRC.  In fact, an electronic hologram can be
recorded during a single, electronically shuttered field of a
television frame using a continuous wave laser.  Short-
exposure, time-average holograms can be recorded
electronically to achieve the goals suggested for flashlamp
pumped dye lasers at another AGARD conference more than
ten years earlier.4 That paper proposed using time-average
holography for measuring velocity field information in a flow
rather than for measuring structural displacement and strain
fields.

The neural network processor requires a computational-model
generated training set.  The model consists of a
phenomenological model and a model of the optical
measurement process.  A finite element model is the
phenomenological model used to compute the predicted
vibration modes of a fan blade.5 A crack model is
incorporated for predicting damage.  The electronic
holography process must be modeled realistically to include a
fluctuating laser speckle effect, variations in the sensitivity
vector, variations in the CCD camera response and variations
in vibration amplitude.6 A training set consists of records,
and a record contains input and output patterns.  The input
pattern is the characteristic fringe pattern generated by the
electronic holography process.  The output pattern is a
distribution of a component of the bending induced strain.

The trained neural network is then tested for robustness by
presenting it with model generated test patterns that vary
these factors.  Then the neural network is tested with patterns
recorded from real structures.  The final stage is to encode,
compile and link the neural network with the electronic
holography video.

The next section discusses the setups, computers and facilities
where the work is being done.

3. FACILITIES AND EXPERIMENTAL
       EQUIPMENT
Graphics workstations containing various hardware and
software video and graphics options7 perform the electronic
holography and the neural-net processing. The neural
networks are generated and trained using a commercial
software package.8  The trained nets are then converted to C
language code for linking with the electronic holography
software.  The performances of the workstation resident
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neural networks and electronic holography are discussed
later.

Trained neural networks are tested with both model generated
and experimental data.  The experiments are performed in a
holographic vibration analysis laboratory with a large
vibration isolation table; argon-ion, helium-neon, diode and
Nd:YAG lasers; and several means for mounting and
vibrating turbomachinery blades and other components.
The laboratory is used routinely for electronic holographic
surveys of turbomachinery components and has been used for
holography in general since 1976.  Lewis Research Center’s
Low Noise Fan Program and outside industries9 have been
frequent, recent customers.

Electronic holograms are transferred directly to the
workstations using ordinary NTSC (American television
standard) 30 frame-per-second, 60 field-per-second, CCD
(charge coupled device) cameras.  The workstations handle as
easily PAL (the European television standard).  The hardware
employs DMA (direct memory access) to transfer the
television frames to RAM (random access memory).  The
workstations are intended specifically to implement color
graphics such as OpenGL10 on color monitors.  Hence pixels
are packed in multiple byte format.  The work reported in this
paper used RGBA format consisting of red, green, blue and
alpha bytes or RGB_332_P format where three colors are
packed into a single byte.  These formats are really very
inefficient for electronic holography which depends on
single-byte luminance values.

Processing the holograms in RAM prior to displaying the
results can slow down the response considerably.  However,
we can process a few hundred to a few thousand large pixels
(finite element resolutions) while maintaining the 30 frame-
per-second display.

A more serious potential problem is frame-to-frame or field-
to-field extraneous motions and speckle-pattern de-
correlations, particularly outside the laboratory.  The actual
hologram exposure time can be controlled by the electronic
shutters in the CCD cameras.  For electronic time-average
holography, the shutter needs to be open only for about one
vibration cycle.  The time between frames can be similarly
short, if a locally available high-speed array of CCD cameras
is used.  Then, bursts of 50,000 or more frames per second
become feasible.

LeRC’s  9x15-foot wind tunnel is a target facility for applying
neural-net processing and electronic holography.  Some of the
authors have recently been involved with tests of advanced
fan models in this wind tunnel. Two of the fan models
required blade inspections for crack damage after vibration
stresses exceeded preset limits.

Accurate and complete models are critical for effective use of
neural-net processing in  electronic holography as discussed
in the next section.

4. STRUCTURAL AND ELECTRONIC-
       HOLOGRAPHY MODELS FOR TRAINING
       ARTIFICIAL NEURAL NETWORKS

The models contain phenomenological and optical
components and must generate  representative sets of training
records.  The neural networks must also be trained, by
example, to ignore irrelevant variations.  For example, the
neural networks might be trained to ignore irrelevant
variations in mode shapes caused by blade mounting
variations.  The neural networks must be trained to perform
accurately in the presence of the laser speckle effect.
Modeling introduces a multidisciplinary expert requirement
for using neural networks in electronic holography.

A finite element model is the phenomenological component
for this discussion.  Finite element models can be used to
generate about the first six vibration modes of a blade with
good engineering accuracy. A simple cantilever plate serves
as the object for this discussion.

Three analytical flat plate models were developed and used as
training sets for the neural network. The models simulated
both damaged and undamaged plates.  All three flat plate
models are 7.62 cm (3”) wide by 15.24 cm (6”) long and have
a thickness of  0.254 cm (0.1”).  A finite element model was
generated consisting of a 20x42 mesh of quadrilateral
elements along the mid-thickness of the plate ( Figure 1 ). The
plate models were idealized as cantilevered plates with the
bottom edge constrained in all six degrees of freedom. The
material is 6061-T6 Aluminum with a Young’s Modulus of
66.19 GPa (9.6x106 psi) , a Poisson’s Ratio of .33, and a
Mass Density of 2712.832 kg/m3  (2.536x10-4 lbs sec2/in4).

Fig. 1-Finite Element Model.

The first model is a flat plate with no damage included. The
second and third models include a vertical and horizontal
crack, respectively. Both cracks are located 3.81 cm  (1.5”)
from the long edge and 2.54 cm (1”) from the bottom edge.
The crack was simulated by creating two coincident grids at
this location. The connectivity for the adjacent elements
surrounding this location was defined to generate an idealized
horizontal crack for the second model ( Fig. 2 ) and a vertical
crack for the third model ( Fig. 3 ).

Fig. 2-Horisontal Crack.

NASA TM–113124                                                             2



Fig. 3-Vertical Crack.

MSC/NASTRAN Solution 103 was used to solve for eight
normal modes and frequencies. The eigenvectors were
normalized with respect to the generalized mass. An output
file of the eigenvalues, eigenvectors, and modal strains was
then provided to train the neural network.

The optical model of electronic holography in the presence of
the laser speckle effect has been discussed in another
publication.6 A training record contains input and output
vectors to be received and generated, respectively, by a feed
forward artificial neural network.  The input vectors contain
finite element resolution characteristic fringe patterns.  Figure
46 shows characteristic fringe patterns, respectively, from an
old silver-halide-emulsion time-average hologram of
a vibrating blade, from two electronic holograms of a
vibrating cantilever plate, from model-generated, finite-
element-resolution holograms of a vibrating cantilever plate,
and from two finite-element-resolution, electronic holograms
of an actual vibrating cantilever plate.  The mode shown is the
first chord-wise mode of interest in tip cracking of blades.
The model generated and measured characteristic fringe
patterns appear very similar.

Fig. 4-First Chord-Wise Mode:  (a) Silver Halide
        Hologram, (b) Electronic Holograms,  (c) Model
        Generated Holograms at Finite Element
        Resolution, (d) Electronic Holograms at Finite
        Element Resolution.

Electronic holography has been discussed in various forms by
many authors.  Electronic time-average holography is
explained very well, for example, by Stetson and Brohinsky.4

The holographer  records image plane holograms consisting
of the interferences between  smooth reference beams and
speckled object beams from vibrating structures.  The
vibration amplitude distribution can be estimated from twelve
holograms containing combinations of  hologram-to-
hologram phase shifting and phase modulation, if the speckle
patterns remain correlated between holograms.  The simplest
application of electronic time-average holography is
accomplished with two frames, where the reference-beam
phase is shifted by  π between two frames and the frames are
subtracted.  These actions provide visualization of the
characteristic fringe patterns as shown in fig. 4.

The two-frame (or two-field) method of electronic time-
average holography supplies the input records for training
neural networks. The input patterns are given mathematically
by

(Speckle Pattern) X  J0(2πK ••δδ)

where δδ is the displacement vector in wavelengths provided
by the finite element modeler and  K is the sensitivity vector
given as the difference between the input and reflected light-
ray directions.  Speckle patterns in general are modeled with a
negative exponential intensity distribution and a uniform
phase distribution. The workstations have pseudo random
number generators with enormous periods to assure sample-
to-sample independence of the speckle patterns.  The input
patterns are generated from the absolute value of  the zero
order Bessel function J0 and are usually normalized between
0  and  1.  A saturation effect is sometimes introduced by
multiplying the patterns by an arbitrary factor followed by
setting inputs greater than  1  at  1 .

The model generated output vectors of the training records
could contain the displacement amplitude distribution, but a
quantity proportional to the bending induced strain is more
useful for inspection.  Bending induced strain, computed from
fringe patterns reconstructed from double-exposure
holograms, has been shown to be very sensitive to damage
such as cracking.3 Performing inspection for damage is the
principal reason for using neural networks for processing
electronic holograms.  In fact, visual inspection of
characteristic fringe patterns is not a very sensitive way to
look for damage.  Figure 5 shows characteristic fringe
patterns computed from the structural model of a damaged
cantilever plate.  The damage induced variation in
displacement changes by an order of magnitude from picture
to picture.  Not until the final picture does the characteristic
pattern show a significant visual change.  Artificial neural
networks can be trained to recognize damage much earlier.

Fig. 5-Characteristic Patterns for Crack Induced
       Displacement Changes of  (a) 1X, (b) 10X, (c) 100X
       (d) 1000X the model value.

Fig. 6-Strain Patterns for (a) Undamaged and (b)
        Cracked Cantilever Plates.

Surface bending induced strain is computed from the second
derivatives of the normal component of displacement.2

Holography visualizes the quantity  K ••δδ , but K  often varies
slowly enough that the second derivatives of  δδ are adequate.
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Figure 6 shows model generated, chord-wise bending induced
strain patterns for the mode shown in fig. 4.  The patterns are
shown for undamaged and cracked samples.
The vertical crack model (Fig. 3) was used to generate the
patterns.

The formats, training, testing and performances of the neural
nets are discussed next.

5. NEURAL NETWORKS FOR DETECTING
       DAMAGED VIBRATING STRUCTURES

This work is based exclusively on feed forward neural
networks with one hidden layer.  These networks have been
divided into two classes:  sparse and dense.  Sparse neural
networks, where the number of hidden-layer nodes is less
than  10 percent of the number of inputs, have been discussed
for vibrational analysis in another publication.6 Sparse neural
networks train rapidly and can be linked to a workstation’s
video without degrading the real-time performance. The
number of hidden-layer nodes, by contrast, in a dense neural
network approaches the number of input nodes or nodes in
the finite element model.  The parallelized code (loop free)
for these networks requires large resources for compilation
and linking with the workstation video.  The dense nets train
slowly and degrade the real-time performance of the
workstation video.  But the dense nets are more immune to
variations in vibration amplitude.  The sparse nets yield false
readings outside a narrow range of vibration amplitudes.
Regardless, the neural networks must be trained to be immune
to the laser speckle effect.

The remaining discussion in this section refers to a  cantilever
plate with the displacement given at 903 nodes.  The chord by
span arrangement of the nodes is 21 X 43 .  Blade designs
typically use between a few hundred and a few thousand
finite elements.  The speckle pattern problem can be placed in
perspective by noting that there are 256903 possible input
patterns given an 8-bit dynamic range for representing
luminance.  But there are only 903 linearly independent
patterns.  Response surface methods used in the study of
sparse nets for vibrational analysis showed that very few
hidden-layer nodes and about 10 percent of a set of linearly
independent speckle patterns confer immunity to the speckle
effect.  Only  100  speckle patterns and  6  hidden-layer nodes
were needed to train a speckle-effect-immune net to recognize
the difference between damaged and undamaged cantilevers.
The bending induced strain distributions for this test are
shown in fig. 6. Samples of the performance of the neural-net
video are discussed in the next section.

The conditions under which the sparse nets can be used to
inspect for blade damage are restricted.  The nets were able to
learn to distinguish only two or three distinct characteristic
patterns (different vibration amplitudes) in the amplitude
range from 0.25 waves to 0.75 waves of maximum
displacement.  The sparse nets were actually unable to learn
the minimum crack contained in the original models.  In fact,
successful training required that the effect of the crack be
amplified.  The modeled damaged and undamaged
distributions were subtracted; the difference was multiplied
by a factor; and the amplified difference was added to the
undamaged amplitude distribution.  Figure 5 shows the effect
of this process on the calculated characteristic fringe pattern
for factors ranging from  1  to  1000.  The minimum factor for
successful training was  7 .  The sparse nets still responded
with a false identification rate of  20 percent at an
amplification factor of 10 (Fig. 5b) .  The false identification
rate was  0 percent for an amplification factor of 100 (Fig.
5c).  A more difficult restriction on the use of sparse nets has
been the need to control the vibration amplitude to avoid false
readings.  A network that was model trained at a maximum
vibration amplitude of  0.5 waves responded accurately to a
set of test examples only when the test amplitudes were
controlled within  ±0.05 wave of 0.5 waves.  A point to be
noted is that these inspections were used to detect cracks near
the base of the cantilever approximation to a blade.  A crack
was simulated in a physical cantilever by grinding a groove
near the position of the modeled crack.  The first chord-wise
mode (lyre mode) is most sensitive, in fact, for detecting tip
cracks.

The response surface study used to optimize the sparse nets
showed that the generalization (interpolation and
extrapolation) capability of the neural networks improved
slowly as the number of hidden-layer nodes was increased.
This improvement was found to continue as the number of
hidden-layer nodes exceeded 10 percent of the inputs.
Subsequently, neural nets were tested on both model
generated and measured characteristic patterns where the
number of hidden-layer nodes equaled or exceeded 100 .  The
performances of the nets for training and crack identification
depended on the crack amplification factor as in the case of
the sparse nets.  But the dense nets were able to separate
damaged from undamaged samples over a larger range of
amplitudes than the sparse nets.  Non optimized compilation
of the parallelized C language code for the neural nets was
limited to nets containing about  100  hidden-layer nodes.
The object file for a sparse net is less than a megabyte. The
object code for a dense net containing  100  hidden-layer
nodes is about 10 megabytes.  The memory and swap space
required for compilation are orders of magnitude larger.
Research continues on the use and performance of dense nets
as well as sparse nets.

The real-time performance of the neural networks in the video
system is discussed next.

6. PERFORMANCE OF WORKSTATION
       RESIDENT NEURAL NETWORKS FOR
       DAMAGE INSPECTION

Real-time vibrational analysis and inspection using electronic
holography and neural-net processing imply image update
rates measured in frames per second.  The following results
were obtained with holograms and synchronization provided
by an off-the-shelf monochrome CCD camera and processed
and displayed by one of the workstations.11

                (a)                         (b)                        (c)

Fig. 7-Video Displays of  (a) Characteristic Pattern,
(b) Neural-Net Output for Undamaged Cantilever,
(c) Neural-Net Output for Cracked Cantilever.

Figure 7 was created from inputs and outputs processed at
about  ½  frame per second.  Pairs of holograms were
captured of cantilevers vibrating in the lyre or first chord-wise
mode. A vibrating mirror was synchronized with the CCD
camera and was used to shift by π the reference-beam phase
between holograms.  The 640 X 480 pixel holograms were
cropped to the size of the cantilever image (about 153 X 303
pixels); subtracted; zoomed without filtering to the 21 X 43
pixel finite element resolution; converted to binary format;
normalized; and processed by the neural network.  The output
of the neural network was converted to image format, stored,
and displayed. Post capture processing was accomplished
with the workstation’s standard image processing commands
and with a slightly modified version of the image subtraction
command.  This slow processor is very convenient for storing
a statistically relevant sample of frames for measuring the
false positive and false negative rates for crack detection as

NASA TM–113124                                                            4



well as measuring the performance of electronic holography
in the presence of environmental disturbances.  Figure 7a
shows a characteristic pattern at about the 153 X 303 pixel
resolution; fig. 7b shows a density pattern of the output of the
neural network for an uncracked cantilever plate; and fig. 7c
shows an output of the neural network for a cracked
cantilever plate.  The outputs of the neural network are
displayed at the  21 X 43  pixel resolution.

The display format at the higher frame rates is the same as
shown by fig. 7, but the neural-net and image processing
routines must be linked with the workstation’s video library.
The measured frame rate is about  30 frames per second for
the sparse nets containing  6  hidden layer nodes and  903
inputs.  The measured frame rate decreases to about  10
frames per second when the number of hidden-layer nodes is
increased to  100 . Synchronization of the camera, the
workstation video, the neural-net processing and the
workstation graphics can be challenging at the higher frame
rates.

7. CONCLUDING REMARKS

Artificial neural networks have been used to process finite-
element-resolution time-average fringe patterns at video rates.
The full video rates are available to neural networks
containing a few hidden-layer nodes.  Neural networks with
many hidden-layer nodes generalize better, but at slightly
lower frame rates.  The procedure was developed for
electronic holography and vibration analysis, but can be
generalized to other applications where there are good
phenomenological and visualization models.

The structural application has proven to be very sensitive to
small changes in the mode shapes.  Perhaps, the major
challenge in using the holographic laboratory has been
realistic mounting of blades and other components for
vibration analysis.  The mounting and excitation techniques
as well as damage produce subtle variations in the vibration
mode shapes.  Some of the artificial neural networks are very
sensitive to these subtle variations.  The work so far has
shown that neural networks can be trained to generalize on
the laser speckle effect and that dense nets can handle
vibration amplitude variations.  Whether neural networks can
be trained to ignore irrelevant variations in mode shapes
remains to be discovered.

To perform a holographic inspection without removing blades
from the rotor requires the blades to be seated properly in
their retention and vibrated.  In model designs at NASA, the
blades are normally loose in their retention when the rotor is
stationary and are seated during rotation.  Thus, a means has
to be devised to conveniently seat installed blades to do in-
situ damage inspection. This is another challenge that must
be overcome to make this method of inspection practical.

As demonstrated in this paper, artificial neural networks can
serve as high-speed interfaces between computational  models
and experiments or tests that generate optical patterns.
Whether these interfaces will be efficient, practical and cost
effective remains to be discovered.
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